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Abstract Selective phenotyping is a way of capturing the

benefits of large population sizes without the need to carry

out large-scale phenotyping and hence is a cost-effective

means of capturing information about gene–trait relation-

ships within a population. The diversity within the sample

gives an indication of the efficiency of this information

capture; less diversity implies greater redundancy of the

genetic information. Here, we propose a method to maxi-

mize genetic diversity within the selected samples. Our

method is applicable to general experimental designs and

robust to common problems such as missing data and

dominant markers. In particular, we discuss its application

to multi-parent advanced generation intercross (MAGIC)

populations, where, although thousands of lines may be

genotyped as a large population resource, only hundreds

may need to be phenotyped for individual studies. Through

simulation, we compare our method to simple random

sampling and the minimum moment aberration method.

While the gain in power over simple random sampling for

all tested methods is not large, our method results in a

much more diverse sample of genotypes. This diversity can

be applied to improve fine mapping resolution once a QTL

region has been detected. Further, when applied to two

wheat datasets from doubled haploid and MAGIC progeny,

our method detects known QTL for small sample sizes

where other methods fail.

Introduction

Experimental crosses have always been limited in size by

the expense and time associated with phenotyping. For

plants, this expense is incurred both through multiple

experimental stages and the need for replicated designs at

each stage. For example, study of baking quality will

involve experimental stages such as the field, milling and

baking; replication is critical to understand the sources of

variation that contribute to the phenotype, such as spatial

variation in the field. In contrast, since the advent of high-

throughput genotyping, both time and cost required for

genotyping have decreased greatly. Hence, a cost-effective

strategy for phenotyping is to use available genetic infor-

mation to select individuals with maximal potential.

A timely example of this phenomenon is embodied in

the large complex crosses, which are in progress around the

world. Examples include the Collaborative Cross in mice

(The Complex Trait Consortium 2004), Nested Association

Mapping populations in maize (Yu et al. 2008), and multi-

parent advanced generation intercross (MAGIC) popula-

tions in plants (Cavanagh et al. 2008; Kover et al. 2009).

Such populations are bred as a genetic resource for

researchers to explore the underlying basis of many com-

plex traits. Indeed, the final population is made up of inbred

lines which need only be genotyped once. However,

Communicated by I. Mackay.

Electronic supplementary material The online version of this
article (doi:10.1007/s00122-012-1986-4) contains supplementary
material, which is available to authorized users.

B. Emma Huang (&)

CSIRO Mathematics, Informatics and Statistics and Food

Futures Flagship, Dutton Park, QLD, Australia

e-mail: emma.huang@csiro.au

D. Clifford

CSIRO Mathematics, Informatics and Statistics, Dutton Park,

QLD, Australia

C. Cavanagh

CSIRO Plant Industry, Black Mountain, Canberra,

ACT, Australia

123

Theor Appl Genet (2013) 126:379–388

DOI 10.1007/s00122-012-1986-4

http://dx.doi.org/10.1007/s00122-012-1986-4


individual studies will focus on specific traits and may not

have the resources to phenotype the entire population.

Hence, subsets of the population need to be selected for

these studies based on genetic information, either from the

whole genome or candidate regions.

The goal of identifying lines with maximum genetic

diversity is also relevant to the selection of core collections

in breeding populations, or in maximizing biodiversity in

wild populations. Franco et al. (2006) suggest a general

strategy to conserve diversity by clustering samples based

on some distance measure and to then select representa-

tives from each cluster as the subsample of interest.

However, many distance measures which have been pro-

posed (Mohammadi and Prasanna 2003; Reif et al. 2005)

are inappropriate for experimental populations. For exam-

ple, distance measures relying on population allele fre-

quencies make no sense when the allele frequencies simply

depend on the design. Similarly, measures of heterozy-

gosity are inappropriate for dominant markers.

In experimental populations, the most basic form of

selection uses no genetic information and selects individ-

uals by simple random sampling (SRS) (Cochran 1977),

where each individual has the same chance of being

selected. However, Jin et al. (2004) demonstrated that their

approach of minimum moment aberration (MMA) selects

lines which have greater power to detect QTL in F2 pop-

ulations compared with SRS. While this approach is not

applicable to other designs and does not cope well with

missing data, it nevertheless demonstrates the potential

value of selective phenotyping. An alternative, maxRec, is

to select the most recombinant progeny (Jannink 2005);

however, this is limited to backcross, doubled haploid and

bi-parental recombinant inbred lines (RIL). Ansari-Mahy-

ari et al. (2009) compare random sampling with maxRec

and other strategies using linkage and linkage disequilib-

rium characteristics to select phenotypes. In general,

though, they find only moderate changes in power of QTL

detection across strategies.

In this paper, we propose a general approach to selective

phenotyping called SPCLUST. This approach accommo-

dates practical issues in genetic studies such as missing

data, dominant markers, and latent genotype data. It is

applicable to general experimental designs, and we com-

pare it to other selection methods through simulations of

backcross, F2 intercross, and MAGIC 4-parent designs. For

the MAGIC design, we extend the approach to encompass

multiple stages of selection. Through simulation we show

that selection within a previously detected QTL region has

the potential to reduce the width of the QTL support

interval and hence improve resolution for fine mapping.

Finally, we apply SPCLUST to two examples of real

datasets. The simulations and real data applications lead us

to conclude that SPCLUST produces subsets of selected

lines with higher diversity and similar or slightly higher

power than other methods.

Materials and methods

We briefly review two other selective phenotyping meth-

ods which we will compare with the SPCLUST method

proposed here. All three methods have similar aims;

namely, to maximize the dissimilarity between selected

individuals. However, the differences between the details

of the approaches and the assumptions required may result

in quite different selected samples upon application.

MMA (Jin et al. 2004)

This method minimizes the average of all pairwise simi-

larities between individuals in the subsample, where sim-

ilarities are based on the number of alleles shared at all

markers. Forward selection of individuals, which are most

dissimilar is followed by refinement of the sample through

swapping of individuals. This approach was developed for

F2 designs and has not been generalized to other experi-

mental designs, nor can it be used with missing genotype

data.

maxRec (Jannink 2005)

This method aims to maximize the overall mapping

information available in the selected sample by maximiz-

ing the number of recombination events. Essentially, the

number of intervals containing recombinations is counted

for each individual, and the selected sample is made up of

those individuals with the highest number of recombina-

tions. This approach is limited to backcross, doubled hap-

loid and bi-parental recombinant inbred lines (RIL), due to

the difficulties in ascertaining recombination events in

other experimental populations.

SPCLUST

We present here a method for selective phenotyping in

general experimental designs. Given a population of size N,

with each line genotyped at M markers, our goal is to select

a sample of size n with maximum genetic diversity.

Essentially, we aim to reduce the set of samples to those

which are most different from each other so as to eliminate

genetic redundancy. While this may not have maximum

power for QTL detection since some genetic redundancy

improves power, we will retain a set of lines for pheno-

typing which conserves the diversity of the whole

population.

The basic idea of this approach is to
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1. Compute genetic distances between all lines in a

population.

2. Cluster based on the computed genetic distances to

produce n clusters.

3. From each cluster, select a single representative.

All three steps can be performed in multiple ways. For

example, in Step 3, we select the individual for which the

sum of distances to all other members of the cluster is

minimized, i.e. the most central member of the cluster.

However, it would be equally possible to select one at

random with equal probability. This alternative is effec-

tively stratified random sampling where the strata are

defined by the genetic information.

In addition to its use as a single-step selection process,

SPCLUST can form the basis of multiple stages of selec-

tion. We denote this form of the algorithm as SPCLUST2.

In particular, this usage is relevant to fine mapping: if a

QTL is large enough to be detected in an initial genome-

wide screen of n1 lines, in a second stage of selection n2

lines may be added based on genetic markers within the

QTL region. Because the selected lines have higher genetic

diversity than randomly selected lines, recombinations are

more likely, and hence the resulting sample should provide

better resolution of true location of the QTL.

For the second stage of selection, we again construct

clusters of the relevant genetic distances, so that in total

there are n1 ? n2 clusters. Any lines selected in the original

screen are by default included in the second stage; other-

wise, the time and effort spent phenotyping the original

sample would be wasted. From the clusters which contain

no lines from the original screen, n2 are randomly sampled;

representative lines are then drawn from these clusters.

Note that if the same genetic distance measure is used in

both stages, then one representative will be drawn from

each cluster; however, if different genetic distance mea-

sures are used, some clusters may not be represented.

This approach maximizes genetic diversity in the second

sample, but we can also maximize the number of recom-

binations directly in a similar fashion to maxRec. For this,

we first impute the most likely parental allele inherited at

each marker and then estimate the number of recombina-

tion events for each line. We can use these estimates to

directly select lines with the highest levels of recombina-

tion, ensuring as before that any lines selected in the ori-

ginal screen are included in our final sample.

Genetic distance measure

An integral part of the algorithm is the computation of

genetic distance between lines. While in theory nearly any

distance measure could be used, many are inappropriate for

the conditions commonly encountered in experimental

designs. For example, Euclidean distance, which computes

the sum of squared differences between genotypes for two

lines, cannot distinguish between ‘‘absence’’ values at a

marker, although this category may encompass a variety of

underlying genotypes. This issue can be overcome by using

the Jaccard distance measure (Jaccard 1908), which con-

siders only the ‘‘presence’’ values; however, by doing so

we are neglecting part of the information in the data.

We define a general distance measure which is appro-

priate for various designs, missing data, dominant markers,

and latent parental alleles. Let Xi and Xj denote the vectors

of observed marker values for the i-th and j-th lines. We

first compute the similarity coefficient between these two

lines as the expected number of alleles in common between

the two lines. The idea of computing the proportion of

alleles shared over all loci has been proposed before

(Bowcock et al. 1994); however, it is generally used in

cases where there is no ambiguity about which alleles are

inherited:

sE ¼
E IBD Xi;Xj

� �� �

2M
¼
PM

k¼1

P
IBD¼y yP y Xik;Xjk

��� �

2M
:

To calculate this expectation, we sum over all markers

in the data and consider all identical-by-descent (IBD)

possibilities for the individual marker values for lines i and

j, multiplied by the probability of their occurrence. In

practice, these probabilities are computed using the

calc.genoprob function in R/qtl (Broman et al. 2003). For

experimental crosses, this produces the probability of each

potential genotype at a locus using hidden Markov model

methodology.

For fully informative markers, where each founder

exhibits a different allele, these probabilities are essentially

0 and 1. For backcrosses, the similarity coefficient reduces

to the simple matching coefficient (Sneath and Snokal

1973), or the proportion of markers for which two lines

have the same observed genotype. However, for dominant

markers in an F2 intercross, these probabilities allow us to

differentiate between the true underlying homozygous and

heterozygous states. For biallelic markers in a MAGIC

4-way cross, we can distinguish between the probabilities

that alleles are inherited from each of the four parents.

Thus, knowledge of the structure of each breeding design

provides additional genetic information to use in selection.

This similarity coefficient can be transformed to a dis-

tance measure dE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sE

p
. After computing distances

between all pairs of lines, we then input this distance

matrix to clustering approaches.

Clustering

There are a variety of clustering methods which can be

used with a given distance measure. Here, we consider two
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hierarchical clustering approaches, as well as partitioning

around medoids (PAM), a more robust version of k-means

clustering (Kaufman and Rousseeuw 1990). The medoid is

a logical representative from each cluster, analogous to the

most central member of the cluster selected with hierar-

chical clustering.

For hierarchical clustering, we compare Ward’s mini-

mum variance method (Ward 1963) and the average link-

age method (or unweighted paired group method using

arithmetic averages—UPGMA) (Sneath and Snokal 1973).

These two clustering approaches are the most commonly

adopted agglomerative hierarchical methods and have been

compared favourably to other approaches previously

(Mohammadi and Prasanna 2003). We expect that different

clustering approaches will result in different selected

samples, since the distances between branches and general

tree structures may be quite different.

Implementation

We have implemented SPCLUST in the R programming

language (R Development Core Team 2011), making use

of genetic imputation functions from R/qtl (Broman et al.

2003) and R/mpMap (Huang and George 2011). The

package R/spclust, which includes both single and two-

stage selection functions as well as visualization functions,

is available on the Comprehensive R Archive Network

(http://cran.r-project.org/web/packages/spclust/index.html).

Simulation

We demonstrate the robust nature of SPCLUST through

simulation of different experimental designs. For each

design type, we compare SRS, SPCLUST, and other

methods which have been proposed for selection under that

design. Further, for each design we consider a different

facet of the data which could potentially affect the sam-

pling results. In backcrosses, we consider the effect of

missing genotypic data; in F2 intercrosses, we consider the

effect of using dominant as opposed to codominant mark-

ers; and for the MAGIC 4-way design, we consider the

effect of using biallelic as opposed to fully informative

markers.

Data were generated using the packages R/qtl (Broman

et al. 2003) for backcrosses and F2 designs and R/mpMap

(Huang and George 2011) for the MAGIC design. The

genetic map was simulated as containing five chromo-

somes of length 100 cM, with marker density varying

between markers with equal spacing of 10, 4, and 2 cM.

A QTL was generated on Chromosome 1 at 45 cM. For

backcrosses and F2 designs, the QTL had effect size 1,

explaining 20 and 33 % of the phenotypic variance,

respectively. The full population contained N = 200 lines,

from which n = 100 lines were selected in the backcross

and n = 50 lines in the F2 population due to the larger

proportion of variance explained by the QTL. For the

MAGIC population, the QTL had effect size of 1.2,

explaining 21 % of the phenotypic variance. Here, we have

a larger population size of N = 800, but similar propor-

tions of selected samples with sizes n = 200, 400, and 600.

The increased population size for the MAGIC design

reflects that populations are typically larger for this design.

Each simulation scenario was repeated 500 times.

We compared methods in terms of genetic diversity of

the selected lines and QTL mapping power. Genetic

diversity was measured by the minimum distance between

any pair of lines in the selected sample. For backcrosses

and F2 designs, QTL mapping power was calculated as the

percentage of replicates in which a QTL was detected

within 10 cM to either side of its true location. For the

MAGIC design, power is defined as the percentage of

replicates where the QTL is detected within 5 cM of the

true location. This more stringent requirement reflects the

greater genetic resolution of the MAGIC 4-way design and

its potential use for fine mapping. The threshold for QTL

detection was determined as the 95th percentile of the

maximum genomewide interval mapping test statistic. This

was calculated by simulating 1,000 replicates generated

from the null distribution of no QTL. Interval mapping was

performed with the packages R/qtl and R/mpMap (Broman

et al. 2003; Huang and George 2011) used to generate the

data.

To test the efficacy of multiple stages of selection, we

generate data as above for a MAGIC 4-way design with

population size of 800 and marker density of 2 cM. A large

QTL explaining 33 % of the phenotypic variance is generated

at 45 cM. The first stage of selection proceeds exactly as

before to select 100 lines. In the second stage, we perform

selection via SPCLUST2 and by selecting lines with maxi-

mum recombinations (SPCLUST2-MR). Recombinations

and the genetic distance between all lines in the population are

computed using only genetic markers within 20 cM of the

QTL detected in the first stage. An additional 100 lines are

selected using the multi-stage approach.

Our comparison of these different methods is based on

the width of the QTL support interval. We compute the

QTL support interval as the region of the genome where

the test statistic is within 12.6 of the maximum test statistic

on the chromosome. Note that this corresponds roughly to

the use of a 2-LOD support interval in standard QTL

mapping; a 1-LOD support interval would be equivalent to

a Wald test statistic within 7.81 of the maximum test sta-

tistic. While it is unclear what level of support corresponds

exactly to a 95 % confidence interval, an appropriate value

should fall somewhere in this range (Manichaikul et al.

2006).
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We perform several comparisons with these data. First,

we compare the two-stage selection approaches with a

single-stage selection of 200 lines using SPCLUST. This

allows us to determine whether the additional stage of

selection does in fact result in improved mapping precision.

Second, we compare these selection approaches with

simple random sampling of 200 lines. Third, we generate

SRS samples ranging in size from 200 to 800 in steps of 50.

Comparing the selection approaches to this range of sam-

ples allows us to determine the effective sample size for

each approach, i.e. what size random sample would be

necessary to achieve similar results.

Data

Here, we consider the application of SPCLUST to two

datasets. One is a population of N = 176 doubled haploid

lines. These progeny were derived from the cross of the

Australian bread wheat cultivar ‘Chara’ and the Canadian

cultivar ‘Glenlea’. Full details of the cross can be found in

Cavanagh et al. (2010). A genetic map for this population

was constructed in a previous study and contains 406

DArT, RFLP, and SSR markers (Huang et al. 2012a). The

total map length was 4,658 cM resulting in an average

density of one marker for every 11.5 cM. On average, 17.6,

28.3, and 12.1 markers were mapped to each chromosome

in the A, B, and D genomes, respectively.

To illustrate the effect of selective phenotyping in such a

population, we analysed data from a two-phase experi-

mental design, with a field trial performed in Griffith, New

South Wales, Australia and the ‘b*’ flour colour measured

in the laboratory. This is an economically important trait

describing flour yellowness which contributes to deter-

mining end use quality. Further description of the trial can

be found in Huang and George (2009). We adopt a two-

stage strategy to analyse the data. First, we construct a

mixed linear model for the relationship between flour

colour and environmental effects such as field spatial

effects, design factors, and the milling process. Predicted

means are computed from this model, which are then used

as the response in the second stage of QTL mapping.

We compare results from the analysis of the full dataset

with the results from three nested selected subsamples of

size n = 44, 88, and 132 (25, 50, and 75 % of the total

population size, respectively). For each sample size, lines

are selected using SRS, MMA, and SPCLUST. The

resulting datasets are analysed using composite interval

mapping as implemented in R/qtl (Broman et al. 2003)

with three cofactors.

The second dataset is from a four-way bread wheat

MAGIC cross. Four Australian wheat cultivars (Chara,

Baxter, Yitpi, and Westonia) were crossed in two pairs to

create F1 seed Yitpi 9 Baxter (AB) and Chara 9 Westonia

(CD). These F1 seeds were then intercrossed (AB 9 CD) via

70 independent crosses to generate 850 ‘‘4-way’’ (ABCD) F1

seed. Each ABCD F1 seed was grown, harvested and two F2

seeds progressed to the F6 generation by single seed descent

to create N = 1581 recombinant inbred lines (RILs).

A field trial was conducted in 2009 at Yanco, New

South Wales, Australia. The field trial consisted of 1,100

F6:8 RILs from the 4-way MAGIC population and check

cultivars including the parental lines. The trial was based

on a partially replicated (Smith et al. 2006) spatially opti-

mized design using DiGGer (Coombes 2002). Forty per-

cent of the RILs were replicated and check cultivars were

sown in triplicate. In total, 1,620 plots were sown. Prior to

machine harvest, plant height (cm) was recorded, and after

harvest hectolitre weight was recorded (kg).

We analyse both traits in this dataset using mixed model

interval mapping as implemented in R/mpMap (Huang and

George 2011). In addition to genetic effects, all models

contain fixed and random effects to account for the

experimental design. At each potential QTL position, we

test the joint (3 df) Wald statistic that all founder effects are

zero. We consider datasets ranging in size from n = 100 up

to n = 1,000 in step sizes of 100, as well as the full set of

RILs. For each sample size, lines are selected using SRS

and SPCLUST. For plant height, our aim is to determine

how many lines are required to detect the QTL found in the

full data. For hectolitre weight, our aim is to assess the

support interval width for large QTL using different

selection methodologies.

Results

Simulation

One aspect of the simulations was a comparison between

different clustering methods used in SPCLUST—Ward,

average, or PAM. In all situations, we found only small

differences among these approaches and hence focus on

average clustering in the results and figures. Extended

results comparing all three approaches can be found in the

Supplementary Material.

The first design considered is a backcross, or doubled

haploid population, or biparental RILs; for our purposes,

the only issue is whether the observed marker values

exactly reflect the underlying genotypes. Generally, we see

an improvement in both diversity (Fig. 1a) and power

(Supp. Fig. 1) over random sampling for both SPCLUST

and maxRec. However, the increase in power is not sub-

stantial for any method. Altering the marker density has

only small effects. We found little difference between

results when data were 10 % missing completely at ran-

dom, when the missing data had been imputed, and when
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the original full data were analysed. Indeed, we find that

the selective phenotyping approaches tend to select lines

with less missing data than average, which may explain the

robustness to moderate levels of missing data.

The second design considered is an F2 intercross (Supp.

Fig. 2). In this situation, MMA exhibits the highest power,

while SPCLUST has similar power to SRS. Using domi-

nant markers results in approximately 25 % loss in power

for all methods. Although MMA produces samples with

high power, it does not produce the most diverse samples.

As was consistently true throughout simulations, SPC-

LUST produces samples which contain the most geneti-

cally diverse individuals (Fig. 1b). MMA-selected samples

are similar in diversity to SRS for codominant markers and

lower for dominant markers.

The third and final design considered is a MAGIC 4-way

cross (Supp. Figs. 3, 4). No previously proposed methods

are applicable here, so we compared SPCLUST only to

random sampling. For this design, most genetic markers

(including SNPs) will be incompletely informative due to

the presence of more parents than alleles in the population.

Figure 2 compares the performance of SPCLUST using

fully informative markers to the more typical situation of

biallelic markers for three different sampling proportions

(25, 50, and 75 %). SPCLUST exhibits no real difference

in power to SRS, but greater diversity. The decrease in

diversity with sample size reflects the definition of diver-

sity as the minimum distance between any members of the

sample. Larger samples are thus more likely to contain

similar individuals. There is an overall decrease in power

for biallelic markers relative to fully informative markers.

This is due to the greater uncertainty as to whether two

individuals share alleles in the biallelic case. As the density

of markers increases, the power approaches that seen for

fully informative markers. This is to be expected since

information is more closely shared between neighbouring

markers.

We also explore the use of SPCLUST2 for fine mapping

in MAGIC through multiple stages of selection. Because

the QTL generated for this set of simulations explains a

large proportion of the variance, it is detectable for over

90 % of replicates even with a sample size of 100. In

replicates where the QTL is detected, we proceed to the

second stage of selection to narrow the prospective QTL

region. We compare the width of the QTL support intervals

for SPCLUST2 and SPCLUST2MR using single and multi-

stage selection against SRS for various sample sizes

(Fig. 3). Both multi-stage procedures perform similarly,

with a median width for SPCLUST2 of 5.16 cM and for

SPCLUST2-MR of 4.74 cM. For SRS of the same size, the

width tends to be over twice as large (11.8 cM), and even

single-stage selective phenotyping performs much better

with widths about 60 % as large. Indeed, the gain in res-

olution by using selective phenotyping is such that for a

single stage, random samples of size 400 are required to

reduce the support interval width comparably, while for

multi-stage selection, the effective sample size is approx-

imately 650.

The reason for this improvement becomes clear by

considering the number of recombinations in the region

surrounding the QTL (Fig. 4). Increased recombinations

allow better resolution by increasing our ability to distin-

guish between the causal variant and nearby loci. Since

SPCLUST2-MR directly selects lines with many recom-

binations, it is not surprising that it has the highest number

of recombinations, averaging over 2/Morgan. SPCLUST2

is the next highest, averaging over 1.5/Morgan, while all

other methods average about one. This increase in local

recombination results from these being the only two

methods, which select lines based on the genetic diversity

in the region surrounding the QTL. One-stage SPCLUST

does not particularly improve on SRS, since it does not

focus on this specific region. However, its increased

Fig. 1 Box plots of diversity scores in a selected subsets of size 100

from a 200-line backcross population at different marker densities and

b selected subsets of size 50 from a 200-line F2 intercross population.

In the F2 population, we compare results for codominant and

dominant markers at a density of 4 cM. Lines within boxes indicate

median values
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resolution for the QTL support interval is likely due to a

general increase across the genome in recombinations due

to the selection of lines with high genetic diversity.

Chara 9 Glenlea population

Previous composite interval mapping analysis of this trait

on the Chara 9 Glenlea population (Huang and George

2009) detected QTL on chromosomes 4B, 7A, and 7B.

Hence in our analysis, we are interested to see whether

these QTL could be detected had selective phenotyping

been used to reduce the number of individuals chosen from

the population. Table 1 shows the maximum LOD score

achieved on each of these chromosomes for different

selection methods and sample sizes. In general, the LOD

score increases with sample size. Using a significance

threshold of 3 for the LOD score, all selection methods

successfully identify the QTL on chromosome 7A. The

QTL on chromosome 4B is only detected by SRS at a

sample size of 88 individuals (50 % of population), while

all methods detect it for the largest selected sample size of

132 individuals (75 % of population). The QTL on chro-

mosome 7B is detected in all samples selected by SPC-

LUST, while the remaining methods detect this QTL as

long as at least half the population is sampled.

MAGIC population

We analysed the traits ‘plant height’ and ‘hectolitre weight’

in the full dataset and selected samples of the MAGIC

4-way population. For plant height, at a significance

threshold of 0.00017, we detected QTL on seven chro-

mosomes in the full data: 1B, 2B, 2D, 4A, 4B, 4D, and 5B.

The two largest QTL, on Chr 4B and 4D, represent known

dwarfing genes (Rht-B1 and Rht-D1) for the trait (Keyes

et al. 1989), while the QTL on 2D may be related to the

Fig. 2 For selected subsets of

varying sample size (200, 400,

600) from an 800-line MAGIC

4-way population. a QTL

mapping power at varying

marker density. Solid lines
denote the use of fully

informative markers in selection

and QTL mapping; dashed lines
denote the use of biallelic

markers. b Box plots of

diversity scores (for marker

density of 4 cM). Lines within
boxes indicate median diversity

scores
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flowering gene for photo-period sensitivity PPD-D1. For

hectolitre weight, we detected QTL on six chromosomes in

the full data: 1A, 1B, 2B, 2D, 5A, and 7A (see Huang et al.

(2012b) for full analyses). The largest QTL occurred on

chromosome 2B in a region of markers associated with the

alien introgression Sr36 (Nyquist 1962). As this QTL is

highly significant, it is detected in most smaller samples, so

we can compare the precision of different methods based

on its support interval width.

For plant height, we selected samples ranging in size from

100 to 1,000 plants by steps of 100. In the sample of 100,

SPCLUST detects a marginally significant QTL on chromo-

some 4D with p value 0.00037; SRS detects no QTL. In the

sample of 200, SPCLUST detects significant QTL on Chro-

mosomes 4B and 4D and a marginally significant QTL on

Chromosome 2B (p = 3.64e–4); SRS detects only a QTL on

Chromosome 4D. QTL profiles for the full analysis, SRS and

SPCLUST are shown in Fig. 5. It is primarily in the smaller

sample sizes that the benefits of selective phenotyping are

realized, since for larger sample sizes, all sampling methods

detect the QTL associated with the dwarfing genes, along with

varying QTL on other chromosomes.

For hectolitre weight, we focus on samples of size 200 and

300 selected using single-stage and multi-stage SPCLUST as

well as SRS. For multi-stage SPCLUST (SPCLUST2), we

select additional lines based on genetic diversity in the 40 cM

region surrounding the QTL detected in samples of size 100 on

chromosome 2B. In a sample of size 200, SPCLUST2 detects

the QTL on 2B in the correct region with a support interval

width of 10 cM; SPCLUST detects the QTL with width

16 cM; and SRS detects the QTL with width 20 cM. For a

sample of size 300, the width is 12 cM for SPCLUST2, 12 for

SPCLUST, and 18 for SRS. For comparison, the support

interval width in the full population is 10 cM.

Discussion

We have proposed a simple yet effective method of

selective phenotyping, which is applicable and has robust

performance for a wide variety of designs and data types.

Fig. 3 Box plots of QTL support interval widths in samples of size

200 selected from an 800-line MAGIC 4-way population with a

marker density of 2 cM. Selection was performed using single-stage

SPCLUST1, multi-stage SPCLUST2, multi-stage SPCLUST2 with

maximum recombination (SPCLUST2MR) and SRS. SRS samples of

size 400 and 650 were closest in QTL support interval width to

SPCLUST1 and SPCLUST2, respectively. Lines within boxes indi-

cate median interval widths

Fig. 4 Box plots of the number of recombinations in a region

surrounding a QTL in samples of size 200 selected from an 800-line

MAGIC 4-way population with a marker density of 2 cM. Selection

was performed using single-stage SPCLUST1, multi-stage SPC-

LUST2, multi-stage SPCLUST2 with maximum recombination

(SPCLUST2MR), and SRS. Lines within boxes indicate median

number of recombinations

Table 1 Maximum LOD scores in interval mapping analysis of

Chara 9 Glenlea population for different selective phenotyping

methods

Chr Sample Size SRS MAXREC SPCLUST

4B 44 1.00 1.38 0.72

4B 88 4.43 2.21 2.18

4B 132 4.13 3.13 3.06

7A 44 9.15 9.55 9.64

7A 88 19.18 16.39 17.21

7A 132 25.20 24.43 22.93

7B 44 1.94 1.63 4.44

7B 88 4.76 4.50 4.17

7B 132 5.15 5.31 4.99

Values above an LOD threshold of 3 are in bold
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The generalizability and flexibility of the SPCLUST

approach make it a powerful tool in planning experimental

cross studies. The approach lends itself naturally to

answering questions about power and necessary sample

sizes for phenotyping subsets of large populations. The

robustness of the method makes it practical for all types of

designs and genetic markers with no greater difficulty than

random sampling.

SPCLUST has been developed to choose which lines to

grow when a researcher has a specific sample size in mind.

However, the approach can also be used to determine a

suitable number of lines to select based on the genotypic

information. An automatic method such as the gap statistic

(Tibshirani et al., 2001) can estimate the optimal number of

clusters based on a measure of within-cluster dissimilarity.

Ideally, the number of lines grown should be greater than

the number of natural clusters in the population. For

example, if there are clearly 21 natural clusters in the

population based on the genotypic information, then it

would be foolish to miss out on a cluster because of an

arbitrary cutoff of 20 lines. Of course, if the methods

highlight 21 natural clusters and the researcher plans to run

30 lines, then the 9 additional lines are not to be considered

a waste of resources; these additional lines will increase the

overall power of detecting QTL.

We have compared SPCLUST with other sampling

methods with regard to QTL mapping power and genetic

diversity. SRS is a standard approach in agricultural stud-

ies, although various forms of selective phenotyping (Jin

et al. 2004; Jannink 2005; Gagneur et al. 2011) have been

proposed. Although these approaches all have high power

in specific situations, none can be applied generally to

experimental crosses. SPCLUST has none of the restric-

tions of other methods, but has comparable power and

maximizes diversity amongst the chosen lines. In concept,

it is most similar to Jannink’s (2005) the maxRec method,

which seeks to maximize the overall number of recombi-

nations. This and SPCLUST are most useful when a

genomewide analysis is undertaken, as the diversity across

the whole genome is increased relative to random sam-

pling, leading to improved resolution in QTL mapping. In

contrast, MMA (Jin et al. 2004) is the most useful when

selection is based on a few candidate genes. An interme-

diate measure between SRS and MMA might be to con-

sider stratified random sampling based on candidate genes

of interest. However, this requires prior knowledge about

the trait of interest.

While we have proposed three different clustering

methods for use with SPCLUST, in a real study a

researcher can use only one. In general, we found that the

average, Ward, and PAM clustering approaches performed

similarly, and hence have focused on a single approach

here and included more detailed comparisons in Supple-

mentary Material. We did find that PAM had slight

improvements over the other methods in terms of diversity

and occasionally power, but we have not yet generalized

this approach to multi-stage selection. However, we expect

to observe the same improvements in resolution as for ward

clustering in a multi-stage approach based on PAM. A

further straightforward extension to the approaches which

we have not considered here would be to incorporate

information other than genotypes in the situation (e.g. a

multi-stage trial) where some phenotypic information is

available.

We have shown that multi-stage selection with SPC-

LUST is successful in increasing resolution and effective

sample size in fine mapping. We expect this approach to be

increasingly popular in large-scale studies aimed at nar-

rowing down the QTL region to the gene level. This is an

efficient way to exploit the relatively cheap genetic infor-

mation available for large populations by reducing phe-

notyping requirements. While smaller samples will still

Fig. 5 Wald profiles for plant

height (in cm) QTL analysis of

selected chromosomes in

subsample of size 200 of the

MAGIC 4-way population. Red
lines denote sample selected

using SRS; green lines denote

sample selected using

SPCLUST; blue lines denote the

full population. QTL detected

by each method at p value

thresholds of 0.001 and 0.00017

are indicated by asterisks and

pluses, respectively (colour

figure online)
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have reduced power relative to larger ones, they need not

have decreased resolution in mapping detectable QTL. The

drawback of this approach is the increased time required to

complete the study; if phenotyping requires multiple stages of

processing, such as for baking volume, then selection in two

stages may be impractical. In that case, selection of the full

sample using SPCLUST provides a compromise which bal-

ances time required against power and mapping resolution.

In addition to data examples, we have explored the

characteristics of this selective phenotyping approach

through simulation, as it is an inexpensive method of

investigating a variety of different scenarios. The primary

benefit of the simulation is that the underlying truth is

known and we can control many factors to isolate their

effect on different methods. We have focused on the effects

of design type, marker type, and missing data here. In

addition, during the simulation process we considered

several different procedures for selecting a subset of

markers to use in each method. In these cases, we found

that varying our selection of markers or their density along

a chromosome had little effect on the power and diversity

of different methods and hence do not present the results.
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